Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
通过自适应训练样本选择弥补基于Anchor和无Anchor检测之间的差距.
通过自适应训练样本选择弥补基于Anchor和无Anchor检测之间的差距.
Libra R-CNN: 面向目标检测中的均衡学习.
GFocal Loss: 为密集目标检测学习合格且分散的边界框.
Long-tail distribution problem in image datasets.
使用梯度下降优化的深度学习模型近似于核方法.
将对抗域适应(ADA)应用于微多普勒人类活动分类.