用Transformer从序列到序列的角度重新思考语义分割.

ViT的出现将纯Transformer结构引入到图像分类中,并在ImageNet中取得优秀的效果。Transformer这种基于SelfAttention的机制,在任意层就能实现全局的感受野,建立全局依赖。而且CNN网络往往需要将原始图像的分辨率下采样到8倍甚至32倍,这样就会损失一些信息,而Transformer无需进行较大程度的下采样就能实现特征提取,保留了图像的更多信息。

本文作者提出了SETR,采取了ViT作为语义分割encoder-decoder结构中的encoder结构,作为编码器来提取图像特征;使用传统的卷积decoder来实现语义分割任务。

SETRencoder结构采用ViT结构,假设一张图像大小为$H×W×3$,如果直接输入到ViT中,运算量可能过大;因此作者在这里做了一个下采样操作,将图像映射成$H/16×W/16×3$,然后切分成$16 \times 16$的图像块序列。将序列嵌入并编码位置后,得到最终的输入。ViT的输出为 $[1024, 16, 16]$ 大小,需要通过上采样恢复原始尺寸。作者设计了两种上采样方式:

SETRViT实现如下,对图像$16$倍下采样构造序列,取出$10,15,20,24$层的特征。

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)
 
class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    def forward(self, x):
        return self.net(x)
 
class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)
 
        self.heads = heads
        self.scale = dim_head ** -0.5
 
        self.attend = nn.Softmax(dim = -1)
        self.dropout = nn.Dropout(dropout)
 
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
 
        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()
 
    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
 
        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
 
        attn = self.attend(dots)
        attn = self.dropout(attn)
 
        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)
 
class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., out_indices = (9, 14, 19, 23)):
        super().__init__()
        self.out_indices = out_indices
        assert self.out_indices[-1] == depth - 1
 
        self.layers = nn.ModuleList([])
        
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
            ]))
 
    def forward(self, x):
        out = []
        for index, (attn, ff) in enumerate(self.layers):
            x = attn(x) + x
            x = ff(x) + x
 
            if index in self.out_indices:
                out.append(x)
        return out
 
class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., out_indices = (9, 14, 19, 23)):
        super().__init__()
        image_height, image_width = (image_size, image_size)
        patch_height, patch_width = (patch_size, patch_size)
 
        assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
 
        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
 
        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
            nn.Linear(patch_dim, dim),
        )
 
        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)
 
        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, out_indices=out_indices)
 
        self.out = Rearrange("b (h w) c->b c h w", h=image_height//patch_height, w=image_width//patch_width)
 
    def forward(self, img):
        x = self.to_patch_embedding(img)
        b, n, _ = x.shape
        cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
        x = torch.cat((cls_tokens, x), dim=1)
        x += self.pos_embedding[:, :(n + 1)]
        x = self.dropout(x)
 
        out = self.transformer(x)
 
        for index, transformer_out in enumerate(out):
            # delete cls_tokens and transform output to [b, c, h, w]
            out[index] = self.out(transformer_out[:,1:,:])
        return out

SETR的解码器实现如下,采用渐进上采样的方式实现分割结果的生成:

class PUPHead(nn.Module):
    def __init__(self, num_classes):
        super(PUPHead, self).__init__()
        self.UP_stage_1 = nn.Sequential(
            nn.Conv2d(1024, 256, 3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
        )        
        self.UP_stage_2 = nn.Sequential(
            nn.Conv2d(256, 256, 3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
        )        
        self.UP_stage_3= nn.Sequential(
            nn.Conv2d(256, 256, 3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
        )        
        self.UP_stage_4= nn.Sequential(
            nn.Conv2d(256, 256, 3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
        )
        self.cls_seg = nn.Conv2d(256, num_classes, 3, padding=1)
 
    def forward(self, x):
        x = self.UP_stage_1(x)
        x = self.UP_stage_2(x)
        x = self.UP_stage_3(x)
        x = self.UP_stage_4(x)
        x = self.cls_seg(x)
        return x
 
class SETR(nn.Module):
    def __init__(self, num_classes, image_size, patch_size, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., out_indices = (9, 14, 19, 23)):
        super(SETR, self).__init__()
        self.out_indices = out_indices
        self.num_classes = num_classes
        self.VIT = ViT( image_size=image_size, patch_size=patch_size, dim=dim, depth=depth, heads=heads, mlp_dim=mlp_dim, 
                        channels = channels, dim_head = dim_head, dropout = dropout, emb_dropout = emb_dropout, out_indices = out_indices)
        self.Head = nn.ModuleDict()
 
        for index, indices in enumerate(self.out_indices):
            self.Head["Head"+str(indices)] = PUPHead(num_classes)
        
    def forward(self, x):
        VIT_OUT = self.VIT(x)
 
        out = []
        for index, indices in enumerate(self.out_indices):
            # 最后一个是最后层的输出
            out.append(self.Head["Head"+str(indices)](VIT_OUT[index]))
        return out