Prompt Tuning:参数高效的提示微调.

大模型全量微调对每个任务训练一个模型,开销和部署成本都比较高。同时,离散的prompts(指人工设计prompts提示语加入到模型)方法,成本比较高,并且效果不太好。

基于此,作者提出了Prompt Tuning,通过反向传播更新参数来学习prompts,而不是人工设计prompts;同时冻结模型原始权重,只训练prompts参数,训练完以后,用同一个模型可以做多任务推理。

Prompt Tuning方法给每个任务定义了自己的Prompt(可学习token),然后在输入层拼接到输入数据上。通过实验发现,随着预训练模型参数量的增加,Prompt Tuning的方法会逼近全参数微调的结果。

同时Prompt Tuning 还提出了 Prompt Ensembling,也就是在一个批次里同时训练同一个任务的不同 prompt(即采用多种不同方式询问同一个问题),这样相当于训练了不同模型,比模型集成的成本小多了。

除此之外,Prompt Tuning 论文中还探讨了 Prompt token 的初始化方法和长度对于模型性能的影响。通过消融实验结果发现,与随机初始化和使用样本词汇表初始化相比,Prompt Tuning采用类标签初始化模型的效果更好。不过随着模型参数规模的提升,这种gap最终会消失。

Prompt token 的长度在20左右时的表现已经不错(超过20之后,提升Prompt token长度,对模型的性能提升不明显了),同样的,这个gap也会随着模型参数规模的提升而减小(即对于超大规模模型而言,即使 Prompt token 长度很短,对性能也不会有太大的影响)。